Guaranteed Energy Error Estimators for a Modified Robust Crouzeix-Raviart Stokes Element
نویسندگان
چکیده
This paper provides guaranteed upper energy error bounds for a modified lowest-order nonconforming Crouzeix-Raviart finite element method for the Stokes equations. The modification from [A. Linke 2014, On the role of the Helmholtz-decomposition in mixed methods for incompressible flows and a new variational crime] is based on the observation that only the divergence-free part of the right-hand side should balance the vector Laplacian. The new method has optimal energy error estimates and can lead to errors that are smaller by several magnitudes, since the estimates are pressure-independent. An efficient a posteriori velocity error estimator for the modified method also should involve only the divergence-free part of the right-hand side. Some designs to approximate the Helmholtz projector are compared and verified by numerical benchmark examples. They show that guaranteed error control for the modified method is possible and almost as sharp as for the unmodified method.
منابع مشابه
Computational Survey on A Posteriori Error Estimators for the Crouzeix-Raviart Nonconforming Finite Element Method for the Stokes Problem
This survey compares different strategies for guaranteed error control for the lowest-order nonconforming Crouzeix-Raviart finite element method for the Stokes equations. The upper error bound involves the minimal distance of the computed piecewise gradient DNC uCR to the gradients of Sobolev functions with exact boundary conditions. Several improved suggestions for the cheap computation of suc...
متن کاملGradient Recovery for the Crouzeix-Raviart Element
A gradient recovery method for the Crouzeix–Raviart element is proposed and analyzed. The proposed method is based on local discrete least square fittings. It is proven to preserve quadratic polynomials and be a bounded linear operator. Numerical examples indicate that it can produce a superconvergent gradient approximation for both elliptic equations and Stokes equations. In addition, it provi...
متن کاملComputational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem
This paper compares different a posteriori error estimators for nonconforming first-order Crouzeix-Raviart finite element methods for simple second-order partial differential equations. All suggested error estimators yield a guaranteed upper bound of the discrete energy error up to oscillation terms with explicit constants. Novel equilibration techniques and an improved interpolation operator f...
متن کاملGuaranteed Error Control for the Pseudostress Approximation of the Stokes Equations
Abstract. The pseudostress approximation of the Stokes equations rewrites the stationary Stokes equations with pure (but possibly inhomogeneous) Dirichlet boundary conditions as another (equivalent) mixed scheme based on a stress in Hpdivq and the velocity in L. Any standard mixed finite element function space can be utilized for this mixed formulation, e.g. the Raviart-Thomas discretization wh...
متن کاملGuaranteed Velocity Error Control for the Pseudostress Approximation of the Stokes Equations
The pseudostress approximation of the Stokes equations rewrites the stationary Stokes equations with pure (but possibly inhomogeneous) Dirichlet boundary conditions as another (equivalent) mixed scheme based on a stress in H(div) and the velocity in L2. Any standard mixed finite element function space can be utilized for this mixed formulation, e.g., the Raviart-Thomas discretization which is r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 64 شماره
صفحات -
تاریخ انتشار 2015